https://cloud.mail.ru/public/9ef7abc2bf4b%2F%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D1%81%D0%B5%D1%82%D1%8C%20%D0%BD%D0%B0%20%D0%B2%D0%B8%D0%B7%D1%83%D0%B0%D0%BB%D0%B1%D0%B5%D0%B9%D1%81%D0%B8%D0%BA%D0%B5%2F
скачать
Attribute VB_Name = "modNN"
'Don't forget to write option base 1 into the code
' or else this net will not work
'Coded by Paras Chopra
'paraschopra@lycos.com
'http://naramcheez.netfirms.com
'Please don't forget to give comments, credits and most important your VOTE!
Option Base 1
Option Explicit
Const e = 2.7183 'Mathematical const, used in sigmod function
Private Type Dendrite ' Dendrite connects one neuron to another and allows signal to pass from it
Weight As Double 'Weight it has
End Type
Private Type Neuron 'The main thing
Dendrites() As Dendrite 'Array of Denrites
DendriteCount As Long 'Number of dendrites
Bias As Double 'The bias
Value As Double 'The value to be passed to next layer of neurons
Delta As Double 'The delta of neuron (used while learning)
End Type
Private Type Layer 'Layer contaning number of neurons
Neurons() As Neuron 'Neurons in the layer
NeuronCount As Long 'Number of neurons
End Type
Private Type NeuralNetwork
Layers() As Layer 'Layers in the network
LayerCount As Long 'Number of layers
LearningRate As Double 'The learning rateof the network
End Type
Dim Network As NeuralNetwork ' Our main network
Function CreateNet(LearningRate As Double, ArrayOfLayers As Variant) As Integer '0 = Unsuccesful and 1 = Successful
Dim i, j, k As Integer
Network.LayerCount = UBound(ArrayOfLayers) 'Init number of layers
If Network.LayerCount < 2 Then 'Input and output layers must be there
CreateNet = 0 'Unsuccessful
Exit Function
End If
Network.LearningRate = LearningRate 'The learning rate
ReDim Network.Layers(Network.LayerCount) As Layer 'Redim the layers variable
For i = 1 To UBound(ArrayOfLayers) ' Initialize all layers
DoEvents
Network.Layers(i).NeuronCount = ArrayOfLayers(i)
ReDim Network.Layers(i).Neurons(Network.Layers(i).NeuronCount) As Neuron
For j = 1 To ArrayOfLayers(i) 'Initialize all neurons
DoEvents
If i = UBound(ArrayOfLayers) Then 'We will not init dendrites for it because output layers doesn't have any
Network.Layers(i).Neurons(j).Bias = GetRand 'Set the bias to random value
Network.Layers(i).Neurons(j).DendriteCount = ArrayOfLayers(i - 1)
ReDim Network.Layers(i).Neurons(j).Dendrites(Network.Layers(i).Neurons(j).DendriteCount) As Dendrite 'Redim the dendrite var
For k = 1 To ArrayOfLayers(i - 1)
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = GetRand 'Set the weight of each dendrite
Next k
ElseIf i = 1 Then 'Only init dendrites not bias
DoEvents 'Do nothing coz it is input layer
Else
Network.Layers(i).Neurons(j).Bias = GetRand 'Set the bias to random value
Network.Layers(i).Neurons(j).DendriteCount = ArrayOfLayers(i - 1)
ReDim Network.Layers(i).Neurons(j).Dendrites(Network.Layers(i).Neurons(j).DendriteCount) As Dendrite 'Redim the dendrite var
For k = 1 To ArrayOfLayers(i - 1)
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = GetRand 'Set the weight of each dendrite
Next k
End If
Next j
Next i
CreateNet = 1
End Function
Function Run(ArrayOfInputs As Variant) As Variant 'It returns the output inf form of array
Dim i, j, k As Integer
If UBound(ArrayOfInputs) <> Network.Layers(1).NeuronCount Then
Run = 0
Exit Function
End If
For i = 1 To Network.LayerCount
DoEvents
For j = 1 To Network.Layers(i).NeuronCount
DoEvents
If i = 1 Then
Network.Layers(i).Neurons(j).Value = ArrayOfInputs(j) 'Set the value of input layer
Else
Network.Layers(i).Neurons(j).Value = 0 'First set the value to zero
For k = 1 To Network.Layers(i - 1).NeuronCount
DoEvents
Network.Layers(i).Neurons(j).Value = Network.Layers(i).Neurons(j).Value + Network.Layers(i - 1).Neurons(k).Value * Network.Layers(i).Neurons(j).Dendrites(k).Weight 'Calculating the value
Next k
Network.Layers(i).Neurons(j).Value = Activation(Network.Layers(i).Neurons(j).Value + Network.Layers(i).Neurons(j).Bias) 'Calculating the real value of neuron
'Network.Layers(i).Neurons(j).Value = tanh(Network.Layers(i).Neurons(j).Value + Network.Layers(i).Neurons(j).Bias) 'Calculating the real value of neuron
End If
Next j
Next i
ReDim OutputResult(Network.Layers(Network.LayerCount).NeuronCount) As Double
For i = 1 To (Network.Layers(Network.LayerCount).NeuronCount)
DoEvents
OutputResult(i) = (Network.Layers(Network.LayerCount).Neurons(i).Value) 'The array of output result
Next i
Run = OutputResult
End Function
Function SupervisedTrain(inputdata As Variant, outputdata As Variant) As Integer '0=unsuccessful and 1 = sucessful
Dim i, j, k As Integer
If UBound(inputdata) <> Network.Layers(1).NeuronCount Then 'Check if correct amount of input is given
SupervisedTrain = 0
Exit Function
End If
If UBound(outputdata) <> Network.Layers(Network.LayerCount).NeuronCount Then 'Check if correct amount of output is given
SupervisedTrain = 0
Exit Function
End If
Call Run(inputdata) 'Calculate values of all neurons and set the input
'Calculate delta's
For i = 1 To Network.Layers(Network.LayerCount).NeuronCount
DoEvents
Network.Layers(Network.LayerCount).Neurons(i).Delta = Network.Layers(Network.LayerCount).Neurons(i).Value * (1 - Network.Layers(Network.LayerCount).Neurons(i).Value) * (outputdata(i) - Network.Layers(Network.LayerCount).Neurons(i).Value) 'Deltas of Output layer
For j = Network.LayerCount - 1 To 2 Step -1
DoEvents
For k = 1 To Network.Layers(j).NeuronCount
DoEvents
Network.Layers(j).Neurons(k).Delta = Network.Layers(j).Neurons(k).Value * (1 - Network.Layers(j).Neurons(k).Value) * Network.Layers(j + 1).Neurons(i).Dendrites(k).Weight * Network.Layers(j + 1).Neurons(i).Delta 'Deltas of Hidden Layers
Next k
Next j
Next i
For i = Network.LayerCount To 2 Step -1
DoEvents
For j = 1 To Network.Layers(i).NeuronCount
DoEvents
Network.Layers(i).Neurons(j).Bias = Network.Layers(i).Neurons(j).Bias + (Network.LearningRate * 1 * Network.Layers(i).Neurons(j).Delta) 'Calculate new bias
For k = 1 To Network.Layers(i).Neurons(j).DendriteCount
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = Network.Layers(i).Neurons(j).Dendrites(k).Weight + (Network.LearningRate * Network.Layers(i - 1).Neurons(k).Value * Network.Layers(i).Neurons(j).Delta) 'Calculate new weights
Next k
Next j
Next i
SupervisedTrain = 1
End Function
'Function Sigmod(Value As Double, Threshold As Double)
'Sigmod = 1 / (1 + e ^ (-(Value - Threshold)))
'End Function
'Using tanh instead of sigmod
Function tanh(x As Double) As Double
tanh = (Exp(x) - Exp(-x)) / (Exp(x) + Exp(-x))
End Function
Private Function Activation(Value As Double)
'To crunch a number between 0 and 1
Activation = (1 / (1 + Exp(Value * -1)))
End Function
Function GetRand() As Double 'Produces a number between -1 and 1
Randomize
GetRand = 2 - (1 + Rnd + Rnd)
'GetRand = Rnd
End Function
Sub EraseNetwork()
Erase Network.Layers
End Sub
Function SaveNet(FilePath As String) As Integer ' 1 = successful, 0 =unsucessful
Dim i, j, k As Integer
Open FilePath For Output As #1
Print #1, "START Learning Rate"
Print #1, Network.LearningRate
Print #1, "END Learning Rate"
Print #1, "START Layer Count"
Print #1, Network.LayerCount
Print #1, "END Layer Count"
Print #1, "START Input Layer Neuron Count"
Print #1, Network.Layers(1).NeuronCount
Print #1, "END Input Layer Neuron Count"
For i = 2 To Network.LayerCount
Print #1, "START Next Layer"
Print #1, "START Neuron Count"
Print #1, Network.Layers(i).NeuronCount
Print #1, "END Neuron Count"
For j = 1 To Network.Layers(i).NeuronCount
Print #1, "START Neuron"
Print #1, "START Bias"
Print #1, Network.Layers(i).Neurons(j).Bias
Print #1, "END Bias"
Print #1, "START Dendrites"
For k = 1 To Network.Layers(i).Neurons(j).DendriteCount
Print #1, Network.Layers(i).Neurons(j).Dendrites(k).Weight
Next k
Print #1, "END Dendrites"
Print #1, "END Neuron"
Next j
Print #1, "END Layer"
Next i
Close #1
SaveNet = 1
End Function
Function LoadNet(FilePath As String) As Integer ' 1 = successful, 0 =unsucessful
Dim Data, DataMain As String
Dim LayerTrack, NeuronTrack As Long 'The variable which tracks the current layer and current neuron
Dim i As Long
If FileExists(FilePath) = 0 Then
LoadNet = 0 'File doest not exists
Exit Function
End If
Open FilePath For Input As #1
Do While Not EOF(1)
DoEvents
Line Input #1, Data
Select Case Data
Case "START Learning Rate":
Line Input #1, DataMain
Network.LearningRate = CDbl(DataMain)
Case "START Layer Count":
Line Input #1, DataMain
Network.LayerCount = CLng(DataMain)
ReDim Network.Layers(Network.LayerCount) As Layer
Case "START Input Layer Neuron Count": 'Input layer
LayerTrack = 1
Line Input #1, DataMain
Network.Layers(1).NeuronCount = CLng(DataMain)
ReDim Network.Layers(1).Neurons(Network.Layers(1).NeuronCount) As Neuron
Case "START Neuron Count":
LayerTrack = LayerTrack + 1
Line Input #1, DataMain
Network.Layers(LayerTrack).NeuronCount = CLng(DataMain)
ReDim Network.Layers(LayerTrack).Neurons(Network.Layers(LayerTrack).NeuronCount) As Neuron
Case "START Bias":
NeuronTrack = NeuronTrack + 1
Line Input #1, DataMain
Network.Layers(LayerTrack).Neurons(NeuronTrack).Bias = CDbl(DataMain)
Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount = Network.Layers(LayerTrack - 1).NeuronCount
ReDim Network.Layers(LayerTrack).Neurons(NeuronTrack).Dendrites(Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount) As Dendrite
Case "START Dendrites":
For i = 1 To Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount 'All the dendrites
DoEvents
Line Input #1, DataMain
Network.Layers(LayerTrack).Neurons(NeuronTrack).Dendrites(i).Weight = CDbl(DataMain)
Next i
Case "END Layer":
NeuronTrack = 0
Case Else
DoEvents
End Select
Loop
Close #1
LayerTrack = 0
NeuronTrack = 0
LoadNet = 1
End Function
' FUNCTION: FileExists
' Determines whether the specified file exists
'
' IN: [strPathName] - file to check for
'
' Returns: True if file exists, False otherwise
'-----------------------------------------------------------
'
Private Function FileExists(ByVal strPathName As String) As Integer
Dim intFileNum As Integer
On Error Resume Next
'
'Remove any trailing directory separator character
'
If Right$(strPathName, 1) = "\" Then
strPathName = Left$(strPathName, Len(strPathName) - 1)
End If
'
'Attempt to open the file, return value of this function is False
'if an error occurs on open, True otherwise
'
intFileNum = FreeFile
Open strPathName For Input As intFileNum
FileExists = IIf(Err, False, True)
Close intFileNum
Err = 0
End Function
Function UnSupervisedTrain(inputdata As Variant, outputdata As Variant) As Integer '0=unsuccessful and 1 = sucessful
End Function
скачать
Attribute VB_Name = "modNN"
'Don't forget to write option base 1 into the code
' or else this net will not work
'Coded by Paras Chopra
'paraschopra@lycos.com
'http://naramcheez.netfirms.com
'Please don't forget to give comments, credits and most important your VOTE!
Option Base 1
Option Explicit
Const e = 2.7183 'Mathematical const, used in sigmod function
Private Type Dendrite ' Dendrite connects one neuron to another and allows signal to pass from it
Weight As Double 'Weight it has
End Type
Private Type Neuron 'The main thing
Dendrites() As Dendrite 'Array of Denrites
DendriteCount As Long 'Number of dendrites
Bias As Double 'The bias
Value As Double 'The value to be passed to next layer of neurons
Delta As Double 'The delta of neuron (used while learning)
End Type
Private Type Layer 'Layer contaning number of neurons
Neurons() As Neuron 'Neurons in the layer
NeuronCount As Long 'Number of neurons
End Type
Private Type NeuralNetwork
Layers() As Layer 'Layers in the network
LayerCount As Long 'Number of layers
LearningRate As Double 'The learning rateof the network
End Type
Dim Network As NeuralNetwork ' Our main network
Function CreateNet(LearningRate As Double, ArrayOfLayers As Variant) As Integer '0 = Unsuccesful and 1 = Successful
Dim i, j, k As Integer
Network.LayerCount = UBound(ArrayOfLayers) 'Init number of layers
If Network.LayerCount < 2 Then 'Input and output layers must be there
CreateNet = 0 'Unsuccessful
Exit Function
End If
Network.LearningRate = LearningRate 'The learning rate
ReDim Network.Layers(Network.LayerCount) As Layer 'Redim the layers variable
For i = 1 To UBound(ArrayOfLayers) ' Initialize all layers
DoEvents
Network.Layers(i).NeuronCount = ArrayOfLayers(i)
ReDim Network.Layers(i).Neurons(Network.Layers(i).NeuronCount) As Neuron
For j = 1 To ArrayOfLayers(i) 'Initialize all neurons
DoEvents
If i = UBound(ArrayOfLayers) Then 'We will not init dendrites for it because output layers doesn't have any
Network.Layers(i).Neurons(j).Bias = GetRand 'Set the bias to random value
Network.Layers(i).Neurons(j).DendriteCount = ArrayOfLayers(i - 1)
ReDim Network.Layers(i).Neurons(j).Dendrites(Network.Layers(i).Neurons(j).DendriteCount) As Dendrite 'Redim the dendrite var
For k = 1 To ArrayOfLayers(i - 1)
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = GetRand 'Set the weight of each dendrite
Next k
ElseIf i = 1 Then 'Only init dendrites not bias
DoEvents 'Do nothing coz it is input layer
Else
Network.Layers(i).Neurons(j).Bias = GetRand 'Set the bias to random value
Network.Layers(i).Neurons(j).DendriteCount = ArrayOfLayers(i - 1)
ReDim Network.Layers(i).Neurons(j).Dendrites(Network.Layers(i).Neurons(j).DendriteCount) As Dendrite 'Redim the dendrite var
For k = 1 To ArrayOfLayers(i - 1)
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = GetRand 'Set the weight of each dendrite
Next k
End If
Next j
Next i
CreateNet = 1
End Function
Function Run(ArrayOfInputs As Variant) As Variant 'It returns the output inf form of array
Dim i, j, k As Integer
If UBound(ArrayOfInputs) <> Network.Layers(1).NeuronCount Then
Run = 0
Exit Function
End If
For i = 1 To Network.LayerCount
DoEvents
For j = 1 To Network.Layers(i).NeuronCount
DoEvents
If i = 1 Then
Network.Layers(i).Neurons(j).Value = ArrayOfInputs(j) 'Set the value of input layer
Else
Network.Layers(i).Neurons(j).Value = 0 'First set the value to zero
For k = 1 To Network.Layers(i - 1).NeuronCount
DoEvents
Network.Layers(i).Neurons(j).Value = Network.Layers(i).Neurons(j).Value + Network.Layers(i - 1).Neurons(k).Value * Network.Layers(i).Neurons(j).Dendrites(k).Weight 'Calculating the value
Next k
Network.Layers(i).Neurons(j).Value = Activation(Network.Layers(i).Neurons(j).Value + Network.Layers(i).Neurons(j).Bias) 'Calculating the real value of neuron
'Network.Layers(i).Neurons(j).Value = tanh(Network.Layers(i).Neurons(j).Value + Network.Layers(i).Neurons(j).Bias) 'Calculating the real value of neuron
End If
Next j
Next i
ReDim OutputResult(Network.Layers(Network.LayerCount).NeuronCount) As Double
For i = 1 To (Network.Layers(Network.LayerCount).NeuronCount)
DoEvents
OutputResult(i) = (Network.Layers(Network.LayerCount).Neurons(i).Value) 'The array of output result
Next i
Run = OutputResult
End Function
Function SupervisedTrain(inputdata As Variant, outputdata As Variant) As Integer '0=unsuccessful and 1 = sucessful
Dim i, j, k As Integer
If UBound(inputdata) <> Network.Layers(1).NeuronCount Then 'Check if correct amount of input is given
SupervisedTrain = 0
Exit Function
End If
If UBound(outputdata) <> Network.Layers(Network.LayerCount).NeuronCount Then 'Check if correct amount of output is given
SupervisedTrain = 0
Exit Function
End If
Call Run(inputdata) 'Calculate values of all neurons and set the input
'Calculate delta's
For i = 1 To Network.Layers(Network.LayerCount).NeuronCount
DoEvents
Network.Layers(Network.LayerCount).Neurons(i).Delta = Network.Layers(Network.LayerCount).Neurons(i).Value * (1 - Network.Layers(Network.LayerCount).Neurons(i).Value) * (outputdata(i) - Network.Layers(Network.LayerCount).Neurons(i).Value) 'Deltas of Output layer
For j = Network.LayerCount - 1 To 2 Step -1
DoEvents
For k = 1 To Network.Layers(j).NeuronCount
DoEvents
Network.Layers(j).Neurons(k).Delta = Network.Layers(j).Neurons(k).Value * (1 - Network.Layers(j).Neurons(k).Value) * Network.Layers(j + 1).Neurons(i).Dendrites(k).Weight * Network.Layers(j + 1).Neurons(i).Delta 'Deltas of Hidden Layers
Next k
Next j
Next i
For i = Network.LayerCount To 2 Step -1
DoEvents
For j = 1 To Network.Layers(i).NeuronCount
DoEvents
Network.Layers(i).Neurons(j).Bias = Network.Layers(i).Neurons(j).Bias + (Network.LearningRate * 1 * Network.Layers(i).Neurons(j).Delta) 'Calculate new bias
For k = 1 To Network.Layers(i).Neurons(j).DendriteCount
DoEvents
Network.Layers(i).Neurons(j).Dendrites(k).Weight = Network.Layers(i).Neurons(j).Dendrites(k).Weight + (Network.LearningRate * Network.Layers(i - 1).Neurons(k).Value * Network.Layers(i).Neurons(j).Delta) 'Calculate new weights
Next k
Next j
Next i
SupervisedTrain = 1
End Function
'Function Sigmod(Value As Double, Threshold As Double)
'Sigmod = 1 / (1 + e ^ (-(Value - Threshold)))
'End Function
'Using tanh instead of sigmod
Function tanh(x As Double) As Double
tanh = (Exp(x) - Exp(-x)) / (Exp(x) + Exp(-x))
End Function
Private Function Activation(Value As Double)
'To crunch a number between 0 and 1
Activation = (1 / (1 + Exp(Value * -1)))
End Function
Function GetRand() As Double 'Produces a number between -1 and 1
Randomize
GetRand = 2 - (1 + Rnd + Rnd)
'GetRand = Rnd
End Function
Sub EraseNetwork()
Erase Network.Layers
End Sub
Function SaveNet(FilePath As String) As Integer ' 1 = successful, 0 =unsucessful
Dim i, j, k As Integer
Open FilePath For Output As #1
Print #1, "START Learning Rate"
Print #1, Network.LearningRate
Print #1, "END Learning Rate"
Print #1, "START Layer Count"
Print #1, Network.LayerCount
Print #1, "END Layer Count"
Print #1, "START Input Layer Neuron Count"
Print #1, Network.Layers(1).NeuronCount
Print #1, "END Input Layer Neuron Count"
For i = 2 To Network.LayerCount
Print #1, "START Next Layer"
Print #1, "START Neuron Count"
Print #1, Network.Layers(i).NeuronCount
Print #1, "END Neuron Count"
For j = 1 To Network.Layers(i).NeuronCount
Print #1, "START Neuron"
Print #1, "START Bias"
Print #1, Network.Layers(i).Neurons(j).Bias
Print #1, "END Bias"
Print #1, "START Dendrites"
For k = 1 To Network.Layers(i).Neurons(j).DendriteCount
Print #1, Network.Layers(i).Neurons(j).Dendrites(k).Weight
Next k
Print #1, "END Dendrites"
Print #1, "END Neuron"
Next j
Print #1, "END Layer"
Next i
Close #1
SaveNet = 1
End Function
Function LoadNet(FilePath As String) As Integer ' 1 = successful, 0 =unsucessful
Dim Data, DataMain As String
Dim LayerTrack, NeuronTrack As Long 'The variable which tracks the current layer and current neuron
Dim i As Long
If FileExists(FilePath) = 0 Then
LoadNet = 0 'File doest not exists
Exit Function
End If
Open FilePath For Input As #1
Do While Not EOF(1)
DoEvents
Line Input #1, Data
Select Case Data
Case "START Learning Rate":
Line Input #1, DataMain
Network.LearningRate = CDbl(DataMain)
Case "START Layer Count":
Line Input #1, DataMain
Network.LayerCount = CLng(DataMain)
ReDim Network.Layers(Network.LayerCount) As Layer
Case "START Input Layer Neuron Count": 'Input layer
LayerTrack = 1
Line Input #1, DataMain
Network.Layers(1).NeuronCount = CLng(DataMain)
ReDim Network.Layers(1).Neurons(Network.Layers(1).NeuronCount) As Neuron
Case "START Neuron Count":
LayerTrack = LayerTrack + 1
Line Input #1, DataMain
Network.Layers(LayerTrack).NeuronCount = CLng(DataMain)
ReDim Network.Layers(LayerTrack).Neurons(Network.Layers(LayerTrack).NeuronCount) As Neuron
Case "START Bias":
NeuronTrack = NeuronTrack + 1
Line Input #1, DataMain
Network.Layers(LayerTrack).Neurons(NeuronTrack).Bias = CDbl(DataMain)
Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount = Network.Layers(LayerTrack - 1).NeuronCount
ReDim Network.Layers(LayerTrack).Neurons(NeuronTrack).Dendrites(Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount) As Dendrite
Case "START Dendrites":
For i = 1 To Network.Layers(LayerTrack).Neurons(NeuronTrack).DendriteCount 'All the dendrites
DoEvents
Line Input #1, DataMain
Network.Layers(LayerTrack).Neurons(NeuronTrack).Dendrites(i).Weight = CDbl(DataMain)
Next i
Case "END Layer":
NeuronTrack = 0
Case Else
DoEvents
End Select
Loop
Close #1
LayerTrack = 0
NeuronTrack = 0
LoadNet = 1
End Function
' FUNCTION: FileExists
' Determines whether the specified file exists
'
' IN: [strPathName] - file to check for
'
' Returns: True if file exists, False otherwise
'-----------------------------------------------------------
'
Private Function FileExists(ByVal strPathName As String) As Integer
Dim intFileNum As Integer
On Error Resume Next
'
'Remove any trailing directory separator character
'
If Right$(strPathName, 1) = "\" Then
strPathName = Left$(strPathName, Len(strPathName) - 1)
End If
'
'Attempt to open the file, return value of this function is False
'if an error occurs on open, True otherwise
'
intFileNum = FreeFile
Open strPathName For Input As intFileNum
FileExists = IIf(Err, False, True)
Close intFileNum
Err = 0
End Function
Function UnSupervisedTrain(inputdata As Variant, outputdata As Variant) As Integer '0=unsuccessful and 1 = sucessful
End Function
Комментариев нет:
Отправить комментарий