вторник, 2 сентября 2014 г.

Stochastic Neural Learning Algorithm

Stochastic
Neural Learning
Algorithm
4.2.
Framework
of
the
algorithm
The
framework
of
the
learning
algorithm
based on
the
main
theorem
(23)
is
as
follows:
1.
Initialize
the
connection
weights
w^(t)
for
t
=
0,1,2,
.
.
.
,
T
-
1.
2.
For
learning
time
r
:=
1,2,.
. .
,
M
do
begin
Clear
the
update
increments
5w,,(t)
for
t
=
0,1,2,.
.
.
,
T
-
1.
For
running
time
r
:=
1,2,
. .
.
,
R
do
begin
Set
an
initial
state
vector
x(0)
=
xO.
Generate
the
Gaussian white
noise
vectors
at)
for
t
=
l,
2,
.
.
.
,
T.
Calculate
the
state
vectors
x(t)
for
t
=
1,2,.
. .
,
T.
Calculate
the
performance
functional
L[x(T)]
.
Calculate
new
update
increments
based on (23)
as
SwG(t)
:=
Swij(t)
-
pL[x(T)]f.[t
+
l)Sj(t)
for
t
=
0,1,2,.
. .
,T
-
1.
end;
Update
the
connection
weights
as
wij{t)
:=
W@
(t)
+
6wij{t)/R
for
t
=
0,1,2,
.
.
.
,
T
-
1.
Adjust
the
connection
weights based
on
the
given
value
range
[wmin,
wmax]
as
wij(t)
:=
max
{min
{~~(t),
wmai:}
,
Wmin}
for
t
=
0,1,2,
.
.
.
,
T
-
1.
Stop
if
the
given
terminal
condition
is
met.
end;
A set
of

Комментариев нет:

Отправить комментарий